智研咨询旗下
2022-2028年中国机器学习行业市场发展规模及市场前景趋势报告
机器学习
分享:
复制链接

2022-2028年中国机器学习行业市场发展规模及市场前景趋势报告

发布时间:2021-12-20

《2022-2028年中国机器学习行业市场发展规模及市场前景趋势报告》共九章,包含国内外企业主要机器学习产品及应用分析,中国机器学习重点企业经营分析,2022-2028年中国机器学习行业投资分析及前景预测等内容。

  • R990087
  • 智研咨询
  • 010-60343812、010-60343813、400-600-8596、400-700-9383
  • sales@chyxx.com

机器学习是指人工智能的一个方面,专注于算法,允许机器学习而不需要编程,并在暴露于新数据时进行更改。

智研咨询发布的《2022-2028年中国机器学习行业市场发展规模及市场前景趋势报告》共九章。首先介绍了机器学习行业市场发展环境、机器学习整体运行态势等,接着分析了机器学习行业市场运行的现状,然后介绍了机器学习市场竞争格局。随后,报告对机器学习做了重点企业经营状况分析,最后分析了机器学习行业发展趋势与投资预测。您若想对机器学习产业有个系统的了解或者想投资机器学习行业,本报告是您不可或缺的重要工具。

本研究报告数据主要采用国家统计数据,海关总署,问卷调查数据,商务部采集数据等数据库。其中宏观经济数据主要来自国家统计局,部分行业统计数据主要来自国家统计局及市场调研数据,企业数据主要来自于国统计局规模企业统计数据库及证券交易所等,价格数据主要来自于各类市场监测数据库。

报告目录

第一章机器学习相关介绍

1.1 人工智能相关概念

1.1.1 人工智能的定义

1.1.2 人工智能产业链

1.1.3 人工智能基本要素

1.2 机器学习的概念

1.2.1 机器学习的定义

1.2.2 机器学习开发平台

1.2.3 机器学习的原理

1.2.4 机器学习应用范围

1.3 机器学习的分类

1.3.1 按学习模式不同分类

1.3.2 按算法网络深度分类

第二章2017-2021年人工智能行业发展综合分析

2.1 全球人工智能行业发展综述

2.1.1 人工智能发展历程

2.1.2 人工智能支持政策

2.1.3 人工智能市场规模

2.1.4 人工智能区域分布

2.1.5 人工智能市场结构

2.1.6 人工智能专利数量

2.1.7 人工智能融资规模

2.1.8 人工智能应用状况

2.2 中国人工智能市场运行状况

2.2.1 人工智能发展历程

2.2.2 人工智能产业政策

2.2.3 人工智能市场规模

2.2.4 人工智能软件规模

2.2.5 人工智能企业数量

2.2.6 人工智能发展现状

2.2.7 人工智能从业人员

2.2.8 人工智能融资规模

2.3 人工智能基础层

2.3.1 基础层产业链价值

2.3.2 基础层发展历程

2.3.3 基础层市场规模

2.3.4 基础层发展现状

2.3.5 基础层融资规模

2.3.6 基础层发展问题

2.3.7 基础层发展趋势

2.4 人工智能技术层

2.4.1 技术层发展现状

2.4.2 人工智能技术全景

2.4.3 人工智能技术水平

2.4.4 人工智能技术分布

2.4.5 人工智能技术成熟度

2.4.6 人工智能热点技术

2.4.7 人工智能专利数量

2.4.8 自然语音处理技术

2.4.9 生物特征识别技术

2.4.10 知识图谱技术

2.4.11 计算机视觉技术

2.4.12 语音语义技术

2.4.13 人工智能技术平台

2.4.14 技术层发展问题

2.4.15 技术层发展趋势

2.5 人工智能应用层

2.5.1 应用层发展现状

2.5.2 各应用层成熟度

2.5.3 应用层市场结构

2.5.4 应用层发展问题

2.5.5 应用层发展趋势

2.5.6 人工智能医疗领域应用

2.5.7 人工智能金融领域应用

2.5.8 人工智能智慧城市应用

2.5.9 人工智能教育领域应用

2.5.10 人工智能制造业应用

2.6 部分城市人工智能产业发展状况

2.6.1 上海市

2.6.2 北京市

2.6.3 深圳市

2.6.4 杭州市

2.7 中国人工智能行业发展趋势分析

2.7.1 人工智能总体发展趋势

2.7.2 人工智能宏观趋势研判

2.7.3 人工智能技术发展研判

2.7.4 人工智能应用场景研判

2.7.5 人工智能市场规模预测

第三章2017-2021年机器学习行业发展综合分析

3.1 全球机器学习行业发展综述

3.1.1 机器学习市场规模分析

3.1.2 机器学习行业发展动力

3.1.3 机器学习市场竞争格局

3.1.4 机器学习发展面临挑战

3.1.5 机器学习企业竞争优势

3.1.6 机器学习市场前景预测

3.2 中国机器行业发展现状分析

3.2.1 机器学习行业发展历程

3.2.2 机器学习行业政策回顾

3.2.3 机器学习市场规模分析

3.2.4 机器学习市场区域分布

3.2.5 机器学习市场竞争格局

3.2.6 机器学习平台市场份额

3.2.7 机器学习行业制约因素

3.3 中国机器学习行业技术发展状况

3.3.1 机器学习技术发展路线

3.3.2 机器学习专利申请数量

3.3.3 机器学习技术发展现状

3.3.4 机器学习技术成熟度

3.3.5 机器学习技术研究进展

3.3.6 机器学习技术研究趋势

第四章中国机器学习产业链综合分析

4.1 机器学习产业链构成

4.2 机器学习产业链上游分析

4.2.1 人工智能芯片主要类型

4.2.2 人工智能芯片市场规模

4.2.3 人工智能芯片供应商

4.2.4 云计算市场规模分析

4.2.5 云计算平台服务商

4.2.6 云计算代表企业介绍

4.2.7 大数据技术体系图谱

4.2.8 大数据服务商分析

4.2.9 大数据市场规模分析

4.2.10 大数据市场支出规模

4.2.11 大数据行业应用结构

4.2.12 大数据产业人才需求

4.3 机器学习产业链中游分析

4.3.1 机器学习技术服务商

4.3.2 机器学习平台厂商

4.3.3 机器学习开放平台

4.3.4 机器学习开源发展

4.4 机器学习产业链下游概述

4.4.1 机器学习应用服务商

4.4.2 机器学习应用领域概况

4.4.3 基于GPU的机器学习应用

第五章2017-2021年深度学习行业发展深度分析

5.1 深度学习行业发展综述

5.1.1 深度学习基本概念

5.1.2 深度学习发展历程

5.1.3 深度学习所处阶段

5.1.4 深度学习主要功能

5.1.5 深度学习发展动力

5.1.6 深度学习融合发展

5.2 深度学习市场运行现状分析

5.2.1 深度学习竞争格局

5.2.2 细分市场发展现状

5.2.3 预训练模型现状分析

5.2.4 深度学习融资现状

5.2.5 深度学习应用领域

5.2.6 深度学习发展问题

5.2.7 深度学习发展建议

5.3 深度学习开源框架市场分析

5.3.1 深度学习框架发展历程

5.3.2 深度学习框架主要作用

5.3.3 深度学习框架驱动因素

5.3.4 深度学习框架市场份额

5.3.5 开源框架市场竞争格局

5.3.6 选择开源框架的考量因素

5.4 深度学习行业发展前景及趋势分析

5.4.1 深度学习应用前景

5.4.2 深度学习发展趋势

5.4.3 深度学习技术趋势

5.4.4 模型小型化发展方向

第六章中国机器学习行业应用领域发展分析

6.1 机器学习算法应用场景分析

6.1.1 分类算法应用场景

6.1.2 回归算法应用场景

6.1.3 聚类算法应用场景

6.1.4 关联规则应用场景

6.2 机器学习在医疗领域中的应用

6.2.1 主要应用场景

6.2.2 医疗影像智能诊断

6.2.3 新药研发

6.2.4 基因测序

6.3 机器学习在金融领域中的应用

6.3.1 主要应用场景

6.3.2 联邦学习

6.3.3 金融科技

6.3.4 智能风控

6.3.5 智慧银行

6.3.6 智慧投顾

6.4 机器学习在农业领域中的应用

6.4.1 应用意义

6.4.2 应用现状

6.4.3 应用问题

6.4.4 应用展望

6.5 机器学习在制造业中的应用

6.5.1 应用优势

6.5.2 智能工厂

6.5.3 智能物流

6.5.4 智能系统

6.5.5 缺陷检测

6.5.6 预测性维护

6.5.7 生成设计

6.5.8 能耗预测

6.5.9 供应链管理

6.6 机器学习在智慧城市中的应用

6.6.1 智能政务

6.6.2 智能基础设施系统

6.6.3 智能交通

6.6.4 自动驾驶

6.6.5 安防行业

6.7 机器学习在教育领域中的应用

6.7.1 智慧校园

6.7.2 智慧课堂

6.7.3 智适应教学

第七章国内外企业主要机器学习产品及应用分析

7.1 全球主要科技企业机器学习布局

7.2 机器学习在国外企业中的应用

7.2.1 亚马逊机器学习应用

7.2.2 苹果公司机器学习应用

7.2.3 Ayasdi机器学习应用

7.2.4 Digital Reasoning机器学习应用

7.2.5 Facebook机器学习应用

7.2.6 谷歌机器学习应用

7.2.7 IBM Watson机器学习应用

7.2.8 QBurst机器学习应用

7.2.9 高通机器学习应用

7.2.10 Uber机器学习应用

7.3 机器学习在国内企业中的应用

7.3.1 百度机器学习云平台

7.3.2 阿里云机器学习平台

7.3.3 腾讯智能钛机器学习

7.3.4 第四范式AutoML平台

第八章中国机器学习重点企业经营分析

8.1 商汤科技

8.1.1 企业发展概况

8.1.2 经营效益分析

8.1.3 企业商业模式

8.1.4 机器学习布局

8.1.5 企业融资状况

8.1.6 企业应用场景

8.2 第四范式

8.2.1 企业发展概况

8.2.2 机器学习平台

8.2.3 企业融资规模

8.2.4 企业竞争优势

8.2.5 企业研发投入

8.2.6 企业应用场景

8.3 旷视科技

8.3.1 企业发展概况

8.3.2 企业经营效益

8.3.3 企业资产规模

8.3.4 企业业务构成

8.3.5 企业研发投入

8.3.6 机器学习技术

8.4 科大讯飞

8.4.1 企业发展概况

8.4.2 经营效益分析

8.4.3 业务经营分析

8.4.4 财务状况分析

8.4.5 核心竞争力分析

8.4.6 公司发展战略

8.5 浪潮集团

8.5.1 企业发展概况

8.5.2 经营效益分析

8.5.3 业务经营分析

8.5.4 财务状况分析

8.5.5 核心竞争力分析

8.5.6 公司发展战略

8.6 百度飞桨

8.6.1 企业发展概况

8.6.2 企业发展历程

8.6.3 平台技术优势

8.6.4 企业核心竞争力

8.6.5 深度学习发展

8.6.6 平台应用场景

8.7 索信达控股

8.7.1 企业发展概况

8.7.2 企业发展历程

8.7.3 业务经营分析

8.7.4 核心竞争力分析

8.7.5 公司发展战略

8.8 其他企业

8.8.1 九章 云极

8.8.2 阿里云

8.8.3 华为云

8.8.4 京东云

8.8.5 腾讯云

8.8.6 百分点

8.8.7 天云数据

第九章2022-2028年中国机器学习行业投资分析及前景预测

9.1 中国机器学习行业投资分析

9.1.1 机器学习投资状况分析

9.1.2 机器学习进入壁垒分析

9.2 中国机器学习行业发展前景分析

9.2.1 机器学习市场发展前景

9.2.2 机器学习行业发展方向

9.2.3 机器学习市场空间预测

9.3 机器学习技术发展趋势分析

9.3.1 发展胶囊网络技术

9.3.2 发展生成对抗网络

9.3.3 发展深度强化学习

9.3.4 可解释性机器学习

9.4 2022-2028年中国机器学习行业预测分析

9.4.1 2022-2028年中国机器学习行业影响因素分析

9.4.2 2022-2028年中国机器学习市场规模预测(ZYZS)

研究方法

报告研究基于研究团队收集到的大量一手和二手信息,研究过程综合考虑行业各种影响因素,包括市场环境、产业政策、历史数据、行业现状、竞争格局、技术革新、市场风险、行业壁垒、机遇以及挑战等。

通过对特定行业长期跟踪监测,分析行业供给端、需求端、经营特性、盈利能力、产业链和商业模式等方面的内容,整合行业、市场、企业、渠道、用户等多层面数据和信息资源,为客户提供深度的行业市场研究报告,全面客观的剖析当前行业发展的总体市场容量、竞争格局、细分数据、进出口及市场需求特征等,并根据各行业的发展轨迹及实践经验,对行业未来的发展趋势做出客观预测。

本公司建立了严格的数据清洗、加工和分析的内控体系,分析师采集信息后,需严格按照公司评估方法论和信息规范的要求,并结合自身专业经验,对所获取的信息进行整理、筛选,最终通过综合统计、分析测算得相关产业研究成果。

如果您有其他需求,请联系我们 在线咨询

版权提示:产业信息网倡导尊重与保护知识产权,对有明确来源的内容注明出处。如发现本站文章存在版权、稿酬或其它问题,烦请联系我们,我们将及时与您沟通处理。联系方式:gaojian@chyxx.com、010-60343812。

智研咨询服务范围

  • 细分市场研究
  • 区域战略规划
  • 竞争对手研究
  • 产业园区规划
  • 投资机会研究
  • 行业市场调研
  • 政府项目投资规划
  • 商业计划书
  • IPO上市咨询
  • 可行性研究
  • 特色小镇规划
  • 定制报告服务
在线咨询
微信客服
微信扫码咨询客服
电话客服

咨询热线

400-700-9383
010-60343812
返回顶部
在线咨询
研究报告
商业计划书
项目可研
定制服务
返回顶部