智研咨询 - 产业信息门户

2017年中国燃料电池不同电解质类型产品情况分析【图】

    一、碱性燃料电池(AFC)

    (1)技术原理

    使用的电解质为水溶液或稳定的氢氧化钾基质,且电化学反应也与羟基(-OH)从阴极移动到阳极与氢反应生成水和电子略有不同。这些电子是用来为外部电路提供能量,然后才回到阴极与氧和水反应生成更多的羟基离子。

    负极反应:2H2 + 4OH- → 4 H2O + 4e-

    正极反应:O2 + 2H2O + 4 e- → 4O H-

    碱性燃料电池的工作温度大约80℃。因此,它们的启动也很快,但其电力密度却比质子交换膜燃料电池的密度低十来倍,在汽车中使用显得相当笨拙。不过,它们是燃料电池中生产成本最低的一种电池,因此可用于小型的固定发电装置。

    如同质子交换膜燃料电池一样,碱性燃料电池对能污染催化剂的一氧化碳和其它杂质也非常敏感。此外,其原料不能含有二氧化碳,因为二氧化碳能与氢氧化钾电解质反应生成碳酸钾,降低电池的性能。

    (2)优缺点分析

    与其它燃料电池相比,AFC功率密度和比功率较高,性能可靠。但它要以纯氢做燃料,纯氧做氧化剂,必须使用Pt、Au、Ag等贵金属做催化剂,价格昂贵。电解质的腐蚀严重,寿命较短,这些特点决定了AFC仅限于航天或军事应用,不适合于民用。

AFC示意图

资料来源:公开资料整理

    (3)应用情况

2008-2015年全球碱性(AFC)出货量统计

资料来源:公开资料,智研咨询整理

    碱性燃料电池(alkaline fuel cell,AFC)是第一个燃料电池技术的发展,最初由美国航空航天局的太空计划,同时生产电力和水的航天器上。AFCS继续使用NASA航天飞机上的整个程序中,除了数量有限的商业应用。

    二、磷酸燃料电池(PAFC)

    (1)技术原理

    如图所示,电池中采用的是100%磷酸电解质,其常温下是固体,相变温度是42℃。氢气燃料被加入到阳极,在催化剂作用下被氧化成为质子,同时释放出两个自由电子。氢质子和磷酸结合成磷酸合质子,向正极移动。电子向正极运动,而水合质子通过磷酸电解质向阴极移动。因此,在正极上,电子、水合质子和氧气在催化剂的作用下生成水分子。

    具体的电极反应表达如下。

    负极反应:

    H2 → 2 + 2 e-

    正极反应:

    O2 + 4 + 4e- → 2H2O

    总反应:

    O2 + 2H2 → 2H2O

    磷酸燃料电池一般工作在200℃左右,采用铂作为催化剂,效率达到40%以上。由于不受二氧化碳限制,磷酸燃料电池可以使用空气作为阴极反应气体,也可以采用重整气作为燃料,这使得它非常适合用作固定电站。

    (2)优缺点分析

    以磷酸做为电解质,可容许燃料气和空气中C02的存在。这使得PAFC成为最早在地面上应用或民用的燃料电池。

PAFC示意图

资料来源:公开资料整理

    与AFC相比它可以在180℃一210℃运行,燃料气和空气的处理系统大大简化,加压运行时,可组成热电联产。但是,PAFC的发电效率目前仅能达到40%一45%(LHV),它需要贵金属铂做电催化剂;燃料必须外重整:而且,燃料气中C0的浓度必须小于1%(175℃)一2%(200℃),否则会使催化剂中毒;酸性电解液的腐蚀作用,使PAFC的寿命难以超过40000小时。PAFC目前的技术已成熟,产品也进入商业化,做为特殊用户的分散式电源、现场可移动电源和备用电源,PAFC还有市场,但用作大容量集中发电站比较困难。

    (3)应用情况

2008-2015年全球磷酸(PAFC)出货量统计

资料来源:公开资料,智研咨询整理

    PAFC用于发电厂包括两种情形:分散型发电厂,容量在10-20MW之间,安装在配电站;中心电站型发电厂,容量在100MW以上,可以作为中等规模热电厂。PAFC电厂比起一般电厂具有如下优点:即使在发电负荷比较低时,依然保持高的发电效率;由于采用模块结构,现场安装简单,省时,并且电厂扩容容易。

    (4)研究情况

    美国和日本投巨资开发燃料电池发电技术,特别是磷酸燃料电池发电技术.作为燃料电池的一种,磷酸燃料电池有其独特的优点:电解液稳定、燃料来源广,成本较低、寿命较长,原材料易得、技术简单,操作弹性大等;所以是目前开发研究水平较高、高业化进程最快、最稳定化的燃料电池.目前研究的重点是提高电极的催经活性、电极材料的耐蚀性和降低成本.提高磷酸燃料电池的放电性能和降低研制开发成本是问题的关键所在。

    受1973年世界性石油危机以及美国PAFC研发的影响,日本决定开发各种类型的燃料电池,PAFC作为大型节能发电技术由新能源产业技术开发机构(NEDO)进行开发。自1981年起,进行了100kW现场型PAFC发电装置的研究和开发。1986年又开展了200kW现场性发电装置的开发,以适用于边远地区或商业用的PAFC发电装置。

    富士电机公司是目前日本最大的PAFC电池堆供应商。截至1992年,该公司已向国内外供应了17套PAFC示范装置,富士电机在1997年3月完成了分散型5MW设备的运行研究。作为现场用设备已有50kW、100kW及500kW总计88种设备投入使用。

    (5)有待解决的问题

    较高的工作温度也使其对杂质的耐受性较强,当其反应物中含有1-2%的一氧化碳和百万分之几的硫时,磷酸燃料电池照样可以工作。

    磷酸燃料电池的效率比其它燃料电池低,约为40%,其加热的时间也比质子交换膜燃料电池长。虽然磷酸燃料电池具有上述缺点,它们也拥有许多优点,例如构造简单,稳定,电解质挥发度低等。磷酸燃料电池可用作公共汽车的动力,而且有许多这样的系统正在运行,不过这种电池似乎将来也不会用于私人车辆。在过去的20多年中,大量的研究使得磷酸燃料电池能成功地用语固定的应用,已有许多发电能力为0.2 – 20 MW的工作装置被安装在世界各地,为医院,学校和小型电站提供动力。

    它采用磷酸为电解质,利用廉价的炭材料为骨架。它除以氢气为燃料外,现在还有可能直接利用甲醇、天然气、城市煤气等低廉燃料,与碱性氢氧燃料电池相比,最大的优点是它不需要CO2处理设备。磷酸型燃料电池已成为发展最快的,也是目前最成熟的燃料电池,它代表了燃料电池的主要发展方向。
磷酸型燃料电池目前有待解决的问题是:如何防止催化剂结块而导致表面积收缩和催化剂活性的降低,以及如何进一步降低设备费用。

    三、熔融碳酸盐型燃料电池(MCFC)

    (1)技术原理

    熔融碳酸盐型燃料电池(Molten Carbonate Fuel Cell, MCFC)是第二代燃料电池,由于其电解质是一种存在于偏铝酸锂(LiAlO2)陶瓷基膜里的熔融碱金属碳酸盐混合物而得其名。熔融碳酸盐燃料电池是由多孔陶瓷阴极、多孔陶瓷电解质隔膜、多孔金属阳极、金属极板构成的燃料电池。其电解质是熔融态碳酸盐,通常是锂和钾,或锂和钠金属碳酸盐的二元混合物。

反应原理示意图

资料来源:公开资料整理

    从上述方程式可以看出,不论阴阳极的反应历程如何,MCFC的发电过程实 质上就是 在熔融介质中氢的阳极氧化和氧的阴极还原过程,其净效应是生成水。 熔融碳酸盐燃料电池与其他类型燃料电池的电极反应有所不同:在阴极, 2CO为反应物,在阳极,2CO为产物,从而2CO在电池工作过程中构成了一个循环。为确保电池稳定连续地工作,必须将阳极产生的2CO返回到阴极,通常采用的办法是将阳极室所排出的尾气经燃烧消除其中的2H和CO后,进行分离除水,然后再将2CO送回至阴极。

    (2)优缺点分析

    在650℃一700℃运行,可采用镍做电催化剂,而不必使用贵重金属:燃料可实现内重整,使发电效率提高,系统简化;CO可直接用作燃料;余热的温度较高,可组成燃气/蒸汽联合循环,使发电容量和发电效率进一步提高。

MCFC示意图

资料来源:公开资料整理

    与SOFC相比,MCFC的优点是:操作温度较低,可使用价格较低的金属材料,电极、隔膜、双极板的制造工艺简单,密封和组装的技术难度相对较小,大容量化容易,造价较低。缺点是:必须配置C02循环系统;要求燃料气中H2S和CO小于0.5PPM;熔融碳酸盐具有腐蚀性,而且易挥发;与SOFC相比,寿命较短;组成联合循环发电的效率比SOFC低。与低温燃料电池相比,MCFC的缺点是启动时间较长,不适合作备用电源。MCFC己接近商业化,示范电站的规模已达到2MW。从MCFC的技术特点和发展趋势看,MCFC是将来民用发电(分散电源和中心电站)的理想选择之一。

    (3)应用情况

2008-2015年全球熔融碳酸盐(MCFC)出货量统计

资料来源:公开资料,智研咨询整理

    熔融碳酸盐燃料电池(Molten Carbonate Fuel Cell,首字母缩写为MCFC),通常被称为第二代燃料电池,因为预期它将继磷酸盐燃料电池之后进入商业化阶段。MCFC的工作温度为873~923K,因而,与低温燃料电池相比,有几个潜在优势。首先,在MCFC的工作温度下,燃料(如天然气)的重整可在电池堆内部进行,既降低了系统成本,又提高了效率;其次,电池反应高温余热可用于工业加工或锅炉循环;第三,几乎所有燃料重整都产生CO,它可使低温燃料电池电极催化剂中毒,但却可成为MCFC的燃料。MCFC的缺点是在其工作温度下,电解质的腐蚀性强,阴极需不断供应CO2。

    (4)研究情况

    50年代初,熔融碳酸盐燃料电池(MCFC)由于其可以作为大规模民用发电装置的前景而引起了世界范围的重视。在这之后,MCFC发展的非常快,它在电池材料、工艺、结构等方面都得到了很大的改进,但电池的工作寿命并不理想。到了80年代,它已被作为第二代燃料电池,而成为实现兆瓦级商品化燃料电池电站的主要研究目标,研制速度日益加快。现在MCFC的主要研制者集中在美国、日本和西欧等国家。现已基本接近商品化生产,但由于其制备成本高而未能广泛应用。

    国内开展MCFC研究的单位不太多。哈尔滨电源成套设备研究所在80年代后期曾研究过MCFC,90年代初停止了这方面的研究工作。1993年中国科学院大连化学物理研究所在中国科学院的资助下开始了MCFC的研究,自制LiAlO2微粉,用冷滚压法和带铸法制备出MCFC用的隔膜,组装了单体电池,其性能已达到国际80年代初的水平。90年代初,中国科学院长春应用化学研究所也开始了MCFC的研究,在LiAlO2微粉的制备方法研究和利用金属间化合物作MCFC的阳极材料等方面取得了很大进展。北京科技大学于90年代初在国家自然科学基金会的资助下开展了MCFC的研究,主要研究电极材料与电解质的相互作用,提出了用金属间化合物作电极材料以降低它的溶解。中国科学院上海冶金研究所近年来也开始了MCFC的研究,主要着重于研究氧化镍阴极与熔融盐的相互作用。1995年上海交通大学与长庆油田合作开始了MCFC的研究,目标是共同开发5kW~10kW的MCFC。中国科学院电工研究所在"八五"期间,考察了国外MCFC示范电站的系统工程,调查了电站的运行情况,现已开展了MCFC电站系统工程关键技术的研究与开发。

    (5)未来技术的研发方向

    目前MCFC已初步进入商品化阶段,它将成为未来大型发电的主力之一。尽管MCFC在反应动力学上有明显的优势,但其高温运行带来的熔盐腐蚀和密封等问题,阻碍了它的快速发展。

    四、固体氧化物燃料电池(SOFC)

    (1)技术原理

    在所有的燃料电池中,SOFC的工作温度最高,属于高温燃料电池。近些年来,分布式电站由于其成本低、可维护性高等优点已经渐渐成为世界能源供应的重要组成部分。由于SOFC发电的排气有很高的温度,具有较高的利用价值,可以提供天然气重整所需热量,也可以用来生产蒸汽,更可以和燃气轮机组成联合循环,非常适用于分布式发电。燃料电池和燃气轮机、蒸汽轮机等组成的联合发电系统不但具有较高的发电效率,同时也具有低污染的环境效益。

    常压运行的小型SOFC发电效率能达到45%-50%。高压SOFC与燃气轮机结合,发电效率能达到70%。国外的公司及研究机构相继开展了SOFC电站的设计及试验,100kW管式SOFC电站己经在荷兰运行。Westinghouse公司不但试验了多个kW级SOFC,而且正在研究MW级SOFC与燃气轮机发电系统。日本的三菱重工及德国的Siemens公司都进行了SOFC发电系统的试验研究。

    一般的SOFC发电系统包括燃料处理单元、燃料电池发电单元以及能量回收单元。图一是一个以天然气为燃料、常压运行的发电系统。空气经过压缩器压缩,克服系统阻力后进入预热器预热,然后通入电池的阴极。天然气经过压缩机压缩后,克服系统阻力进入混合器,与蒸汽发生器中产生的过热蒸汽混合,蒸汽和燃料的比例为,混合后的燃料气体进入加热器提升温度后通入燃料电池阳极。阴阳极气体在电池内发生电化学反应,电池发出电能的同时,电化学反应产生的热量将未反应完全的阴阳极气体加热。阳极未反应完全的气体和阴极剩余氧化剂通入燃烧器进行燃烧,燃烧产生的高温气体除了用来预热燃料和空气之外,也提供蒸汽发生器所需的热量。经过蒸汽发生器后的燃烧产物,其热能仍有利用价值,可以通过余热回收装置提供热水或用来供暖而进一步加以利用。

    (2)优缺点分析

    电解质是固体,可以被做成管形、板形或整体形。与液体电解质的燃料电池(AFC、PAFC和MCFC)相比,SOFC避免了电解质蒸发和电池材料的腐蚀问题,电池的寿命较长(已达到70000小时)。CO可做为燃料,使燃料电池以煤气为燃料成为可能。SOFC的运行温度在1000℃左右,燃料可以在电池内进行重整。

SOFC示意图

    由于运行温度很高,要解决金属与陶瓷材料之间的密封也很困难。与低温燃料电池相比,SOFC的启动时间较长,不适合作应急电源。与MCFC相比,SOFC组成联合循环的效率更高,寿命更长(可大于40000小时);但SOFC面临技术难度较大,价格可能比MCFC高。示范业绩证明SOFC是未来化石燃料发电技术的理想选择之一,既可用作中小容量的分布式电源(500kw一50MW),也可用作大容量的中心电站(>l00MW)。尤其是加压型SOFC与微型燃气轮结合组成联合循环发电的示范,将使SOFC的优越性进一步得到体现。

    (3)应用领域分析

2008-2015年全球固体氧化物(SOFC)出货量统计

资料来源:公开资料,智研咨询整理

    固体氧化物燃料电池具有燃料适应性广、能量转换效率高、全固态、模块化组装、零污染等优点,可以直接使用氢气、一氧化碳、天然气、液化气、煤气及生物质气等多种碳氢燃料。在大型集中供电、中型分电和小型家用热电联供等民用领域作为固定电站,以及作为船舶动力电源、交通车辆动力电源等移动电源,都有广阔的应用前景。

    (4)开发与应用进展

    固体氧化物燃料电池是一种新型发电装置,其高效率、无污染、全固态结构和对多种燃料气体的广泛适应性等,是其广泛应用的基础。

    固体氧化物燃料电池单体主要组成部分由电解质(electrolyte)、阳极或燃料极(anode,fuel electrode)、阴极或空气极(cathode,air electrode)和连接体(interconnect)或双极板(bipolar separator)组成。

    固体氧化物燃料电池的工作原理与其他燃料电池相同,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和固体氧化物电解质组成,阳极为燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。

    在固体氧化物燃料电池的阳极一侧持续通入燃料气,例如:氢气(H2)、甲烷(CH4)、城市煤气等,具有催化作用的阳极表面吸附燃料气体,并通过阳极的多孔结构扩散到阳极与电解质的界面。在阴极一侧持续通入氧气或空气,具有多孔结构的阴极表面吸附氧,由于阴极本身的催化作用,使得O2得到电子变为O2-,在化学势的作用下,O2-进入起电解质作用的固体氧离子导体,由于浓度梯度引起扩散,最终到达固体电解质与阳极的界面,与燃料气体发生反应,失去的电子通过外电路回到阴极。

    单体电池只能产生1V左右电压,功率有限,为了使得SOFC具有实际应用可能,需要大大提高SOFC的功率。为此,可以将若干个单电池以各种方式(串联、并联、混联)组装成电池组。 SOFC组的结构主要为:管状(tubular)、平板型(planar)和整体型(unique)三种,其中平板型因功率密度高和制作成本低而成为SOFC的发展趋势。

    SOFC与第一代燃料电池(磷酸型燃料电池,简称PAFC)、第二代燃料电池(熔融碳酸盐燃料电池,简称MCFC)相比它有如下优点:(1)较高的电流密度和功率密度;(2)阳、阴极极化可忽略,彼化损失集中在电解质内阻降;(3)可直接使用氢气、烃类(甲烷)、甲醇等作燃料,而不必使用贵金属作催化剂;(4)避免了中、低温燃料电池的酸碱电解质或熔盐电解质的腐蚀及封接问题;(5)能提供高质余热,实现热电联产,燃料利用率高,能量利用率高达80%左右,是一种清洁高效的能源系统;(6)广泛采用陶瓷材料作电解质、阴极和阳极,具有全固态结构;(7)陶瓷电解质要求中、高温运行(600~1000℃),加快了电池的反应进行,还可以实现多种碳氢燃料气体的内部还原,简化了设备。

    除了燃料电池的一般优点外,SOFC还具有以下特点:对燃料的适应性强,能在多种燃料包括碳基燃料的情况下运行;不需要使用贵金属催化剂;使用全固态组件,不存在对漏液、腐蚀的管理问题;积木性强,规模和安装地点灵活等。这些特点使总的燃料发电效率在单循环时有潜力超过60%,而对总的来说体系效率可高达85%,SOFC的功率密度达到1MW/M3,对块状设计来说有可能高达3MW/M3。事实上,SOFC可用于发电、热电回用、交通、空间宇航和其他许多领域,被称为21世纪的绿色能源。

    (5)有待突破的关键技术

    华中科技大学燃料电池研究中心自主研制出5KW级固体氧化物燃料电池(简称SOFC)独立发电系统,并实现了4.82KW的功率输出,科技部组织的现场技术验收组专家认为,这标志着我国SOFC系统独立发电技术取得了新突破,基本具备进入工程化和产品化阶段的条件。

    记在国家“863计划”支持下,华中科技大学燃料电池研究中心李箭教授团队自主研制成功的5KW级SOFC独立发电系统,采用双电堆模块和热-电协同管控技术,发电效率达到46.5%,热电联供能量利用率可达79.7%;其中采用的大面积单电池功率密度高达每平方厘米1.2W,衰减速率仅为每千小时0.41%,达到了国际先进水平。

    验收组认为,这一系统的成功研制,表明我国SOFC技术基本具备了进入工程化和产品化阶段的条件。燃料电池研究中心今后将致力于提高SOFC系统的可靠性和稳定性,并实现关键零部件的国产化,为我国SOFC技术的产业化和大规模应用奠定基础。

    SOFC是将煤、石油、天然气等化石燃料、沼气等生物质燃料,以及其他碳氢化合物中的化学能直接转换为电能的电化学发电技术,具有高效率、低排放、无噪音等优点,在分布式电站、应急电源、交通运输、军事和海洋等领域具有广阔的应用前景,被公认为21世纪绿色能源技术,对满足电力需求、缓解能源危机、保护生态环境及保障国家安全都具有重大意义。

    (6)应用前景分析

    固体氧化物燃料电池的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展。

    早期开发出来的SOFC的工作温度较高,一般在800~1000℃。科学家已经研发成功中温固体氧化物燃料电池,其工作温度一般在800℃左右。一些国家的科学家也正在努力开发低温SOFC,其工作温度更可以降低至650~700℃。工作温度的进一步降低,使得SOFC的实际应用成为可能。

    固体氧化物燃料电池的开发始于20世纪40年代,但是在80年代以后其研究才得到蓬勃发展。 早期开发出来的SOFC的工作温度较高,一般在800~1000℃。目前科学家已经研发成功中温固体氧化物燃料电池,其工作温度一般在800℃左右。一些国家的科学家也正在努力开发低温SOFC,其工作温度更可以降低至650~700℃。工作温度的进一步降低,使得SOFC的实际应用成为可能。  固态氧化物燃料电池的效率约为60%左右,可供工业界用来发电和取暖,同时也具有为车辆提供备用动力的潜力。  

    固体氧化物燃料电池的开发研究以及商业化,是解决目前世界能源短缺和环境污染的重要手段,受到了世界主要国家的普遍重视,包括美国、欧洲、日本、澳大利来、韩国等。

    五、质子交换膜燃料电池(PEMFC)

    (1)技术原理

    该技术是General Electric公司在20世纪50年代发明的,被NASA用来为其Gemini空间项目提供动力。目前这种燃料电池是汽车公司最喜欢使用的一类燃料电池,用来取代原来使用的内燃机。质子交换膜燃料电池有时也叫聚合物电解质膜,或固态聚合物电解质膜,或聚合物电解质膜燃料电池。

质子交换膜燃料电池的基本设计:

资料来源:公开资料整理

    在质子交换膜燃料电池中,电解质是一片薄的聚合物膜,例如聚[全氟磺]酸(poly[perfluorosulphonic]acid),和质子能够渗透但不导电的NafionTM ,而电极基本由碳组成。氢流入燃料电池到达阳极,裂解成氢离子(质子)和电子。氢离子通过电解质渗透到阴极,而电子通过外部网路流动,提供电力。以空气形式存在的氧供应到阴极,与电子和氢离子结合形成水。在电极上的这些反应如下:  

    阳极:2H2→ 4H+ + 4 e-  

    阴极:O2 + 4H+ + 4e- → 2 H e-O  

    整体:2H2 + O2→ 2 H2O + 能量  

    质子交换膜燃料电池的工作温度约为80℃。在这样的低温下,电化学反应能正常地缓慢进行,通常用每个电极上的一层薄的白金进行催化。  

    这种电极/电解质装置通常称做膜电极装配(MEA),将其夹在二个场流板中间便能构成燃料电池。这二个板上都有沟槽,将燃料引导到电极上,也能通过膜电极装配导电。每个电池能产生约0.7伏的电,足够供一个照明灯泡使用。驱动一辆汽车则需要约300伏的电力。为了得到更高的电压,将多个单个的电池串联起来便可形成人们称做的燃料电池存储器。

    (2)优缺点分析

    PEPC的运行温度较低(约80℃),它的启动时间很短,在几分钟内可达到满负荷。与PAFC相比,电流密度和比功率都较高,发电效率也较高(45%一50%(LHV)),对CO的容许值较高(<10ppm)。

PEMFC示意图

资料来源:公开资料整理

    PEFC的余热温度较低,热利用率较低。与PAFC和MCFC等液体电解质燃料电池相比,它具有寿命长,运行可靠的特点。PEFC是理想的可移动电源,是电动汽车、潜艇、航天器等移动工具电源的理想选择之一。目前,在移动电源、特殊用户的分布式电源和家庭用电源方面有一定的市场,不适合做大容量中心电站。

    (3)应用领域分析

2008-2015年全球质子交换膜出货量统计

资料来源:公开资料,智研咨询整理

    质子交换膜燃料电池应用十分广泛。实际上,凡是需要能源、动力的地方都可以应用PEMFC。质子交换膜燃料电池的主要应用领域可分为以下三大类:  

    一是用作便携电源、小型移动电源、车载电源、备用电源、不间断电源等,适用于军事、通讯、计算机、地质、微波站、气象观测站、金融市场、医院及娱乐场所等领域,以满足野外供电、应急供电以及高可靠性、高稳定性供电的需要。  PEMFC电源的功率最小的只有几瓦,如手机电池。

    PEMFC手机电池的连续待机时间可达1000小时,一次填充燃料的通话时间可达100小时(摩托罗拉)。适用于便携计算机等便携电子设备的PEMFC电源的功率范围大致在数十瓦至数百瓦(东芝)。军用背负式通讯电源的功率大约为数百瓦级。卫星通讯车用的车载PEMFC电源的功率一般为数千瓦级。  

    二是可用作助动车、摩托车、汽车、火车、船舶等交通工具动力,以满足环保对车辆船舶排放的要求。  

    PEMFC的工作温度低,启动速度较快,功率密度较高(体积较小)因此,很适于用作新一代交通工具动力。这是一项潜力十分巨大的应用。由于汽车是造成能源消耗和环境污染的首要原因,因此,世界各大汽车集团竞相投入巨资,研究开发电动汽车和代用燃料汽车。从目前发展情况看,PEMFC是技术最成熟的电动车动力源,PEMFC电动车被业内公认为是电动车的未来发展方向。燃料电池将会成为继蒸汽机和内燃机之后的第三代动力系统。PEMFC可以实现零排放或低排放;其输出功率密度比目前的汽油发动机输出功率密度高得多,可达1.4KW/公斤或1.6KW/升。  

    用作电动自行车、助动车和摩托车动力的PEMFC系统,其功率范围分别是300-500W、500W-2KW、2-10KW。游览车、城市工程车、小轿车等轻型车辆用的PEMFC动力系统的功率一般为10-60KW。公交车的功率则需要100-175KW。  

    PEMFC用作潜艇动力源时,与斯特林发动机及闭式循环柴油机相比,具有效率高、噪声低和低红外辐射等优点,对提高潜艇隐蔽性、灵活性和作战能力有重要意义。美国、加拿大、德国、澳大利亚等国海军都已经装备了以PEMFC为动力的潜艇,这种潜艇可在水下连续潜行一个月之久。  三是可用作分散型电站。PEMFC电站可以与电网供电系统共用,主要用于调峰;也可作为分散型主供电源,独立供电,适于用作海岛、山区、边远地区或新开发地区电站。  

    与集中供电方式相比,分散供电方式有较多的优点:(1)可省去电网线路及配电调度控制系统;(2)有利于热电联供(由于PEMFC电站无噪声,可以就近安装,PEMFC发电所产生的热可以进入供热系统),可使燃料总利用率高达80%以上;(3)受战争和自然灾害等的影响比较小;(4)通过天然气、煤气重整制氢,使得可利用现有天然气、煤气供气系统等基础设施为PEMFC提供燃料,通过生物制氢、太阳能电解制氢方法则可形成循环利用系统(这种循环系统特别适用于广大的农村地区和边远地区),使系统建设成本和运行成本大大降低。因此,PEMFC电站的经济性和环保性均很好。国际上普遍认为,随着燃料电池的推广应用,发展分散型电站将是一个趋势。  

    综上所述:质子交换膜燃料电池应用前景广阔,市场潜力巨大,对产业结构升级、环境保护及经济的可持续发展均有重要意义。鉴于其重要性,燃料电池已经被美国列为使美国保持经济繁荣和国家安全而必须发展的27项关键技术之一,并被美国、加拿大等发达国家认定为21世纪首选的清洁能源系统。2000年,燃料电池还被美国《时代》周刊评为21世纪对人类社会有重要影响的十大技术之一。

    (4)有待突破的关键技术

    为实现汽车工业的可持续发展,人们一直在探索开发具有无污染、噪声低、维护简便和易操纵等优点的电动汽车。百余年来汽车工业的发展给人类做出了巨大贡献,汽车对社会进步的影响意义深远。但是,随着汽车数量的大量增加,汽车尾气对人类生存环境造成的危害逐渐为人们所了解和重视。八十年代以来,许多工业化国家的有关机构和汽车厂商纷纷投入大量资金开发出多种类型的电动汽车。这其中有二次电池电动汽车、混合动力(电源)电动汽车及燃料电池电动汽车等等。近年来,质子交换膜燃料电池技术有了突破性进展,尤其是高的比功率和无需充电的特点,使其在作为电动汽车动力源应用方面极具竞争力,显示出良好的应用前景。质子交换膜燃料电池是以氢气为燃料,空气(O2)为氧化剂进行工作的。在燃料供给、运行工况控制等方面与二次电池截然不同。因此,在以燃料电池为动力源的电动汽车开发过程中,质子交换膜燃料电池动力驱动系统的试验方法必须给以特殊的考虑。

    目前限制它发展的主要障碍之就是甲醇氧化中间物导致催化剂中毒及催化剂的活性不够,所以,提高阳极电催化剂活性,解决,中毒问对燃料电池的发展与实际应用将起重要的推动作用。

    目前针对这方面的研宄工作主要集中在采用铂合金催化剂,它们可以在较低的电势下氧化,从而降低,对电极活性的影响,但它们的抗,能力和活性目前还不能满足要求,同时在电极上吸附另外种金属原子以及采用含活性氧的仙,3型金属氧化物作为催化剂的方法也在研究之中。

    (5)国外开发与应用进展

    近年来,随着质子交换膜材料性能的不断提高和PEMFC内部工艺技术的改进,国外PEMFC的综合性能有了大幅度提高。加拿大Ballard公司、意大利DeNora公司和德国Siemens公司开发的PEMFC电堆性能代表了当今国际最先进的水平。其中Ballard公司的大功率PEMFC的比功率已达1000W/l,工作寿命11000hr。

    1、移动式及便携式电源开发与应用

    PEMFC与其它类型燃料电池相比,具有比功率最高,起动最快,无腐蚀性等突出优点,因此,特别适合作为移动电源及便携电源使用。90年代初,美国及加拿大等国的PEMFC开发机构受各自国家国防部门委托,曾开发了多种军用移动或便携电源。例如:ErgenicsPowerSystem公司开发的带有金属氢化物贮氢器的PEMFC便携电源,输出电压17V,电流7A;该公司还开发了由空气冷却,仍使用H2/O2的PEMFC系列电源,输出电压12—14V,输出功率0.5—1kW。

    BallardPowerSystem公司开发的水冷式PEMFC便携电源,主要目标是作为军用便携式野战发电装置。该电源系统中包括以下几个部分:甲醇重整制氢、空气加压供给、热交换器、水回收装置、逆变器及控制单元等。在电源小型化方面,H-Power公司曾开发出25WH2/AirPEMFC微型电源,以替代NiCd电池应用于通讯行业。百瓦—千瓦级PEMFC移动与便携电源在EnergyEnergyPattener公司、H-Power公司等都有批量生产。已知的小批量用户有高尔夫球电动车、电动交通信号指示牌及助力自行车等。

    2、固定式发电装置的开发及应用

    固定式PEMFC发电装置主要用于分布式发电及现场型发电场合,通常输出功率在十千瓦至百千瓦级。1992年Ballard公司开发出功率10kW,以氢为燃料的固定式发电装置。在此基础上,近年来又开发了以天燃气为燃料的10kW固定式发电装置。1997年8月以天然气为燃料,功率更大的250kW固定发电系统又投入了运行。这标志着近年来Ballard公司在PEMFC技术开发方面达到了一个新的水平。目前,该公司正在对250kW发电系统进行性能测试与评价。安排在1999—2000年的现场运行考核,将为250kW发电系统的商业化铺平道路。此外,DeNora公司在1996年开发出10kW固定式发电装置的基础上,通过改进设计,于1997年又开发出输出电压60V,输出电流500A,功率30kW固定式发电装置。

    3、电动车及船用动力装置的开发与应用

    PEMFC高的比功率,常温下可快速起动的特点,使其成为目前最具竞争力的电动车用动力源。因此,一些国家颇具实力的汽车制造厂商纷纷投入巨资开发以PEMFC为动力的电动车。加拿大Ballard公司于1993年就展示了第一辆PEMFCBUS样车。1994年该公司在政府资助下又进行了第二辆PEMFCBUS车的开发。新车的驱动功率由原来的91.9kW增加至202.3kW;载客量由20人增至75人,1996年新车已开始试运行。德国的DaimlerBenz公司于1997年在斯图加特宣布,已开发出具有自动驱动系统的以甲醇为燃料的NeCar3型PEMFC电动车,该车可连续行驶250km。Benz公司还研制了一辆由10个25kWPEMFC堆为动力的BUS。在该车顶部装有7个压力为300bar,容积150l的压缩贮氢容器,可向电堆提供最大为45000l的氢燃料。此外,1996年10月日本Toyota公司开发出RAVALⅤ型PEMFC电动车。该车使用了金属贮氧器,其贮氢量比压缩式贮氢量增加一倍。1997年末,意大利DeNora公司为欧共体研制的用于BUS动力的50kWPEMFC堆已交货。1998年该公司还将完成供电动骄车用的带有氢发生装置的30kWPEMFC堆。

    鉴于PEMFC具有低噪声,红外信号弱的特点,一些国家相继开发出隐蔽性更强的第三代PEMFC动力潜水艇。90年代中期以来,加拿大Ballard公司、德国Siemens公司及HDW造船公司先后接受国防部门的委托建造PEMFC动力潜水艇。1997年8月Siemens公司已将功率为300kW、重8t的PEMFC堆交付给造船厂。

    该电池组已进行了1500hr的持续试验,计划装在于2003年服役的德国海军新型212级潜水艇上。此外,意大利DeNora公司于1997年为ANSALDO公司开发了功率45kW,9个电堆的船用PEMFC动力装置。

    (6)应用前景分析

    质子交换膜燃料电池发电作为新一代发电技术,其广阔的应用前景可与计算机技术相媲美。经过多年的基础研究与应用开发,质子交换膜燃料电池用作汽车动力的研究已取得实质性进展,微型质子交换膜燃料电池便携电源和小型质子交换膜燃料电池移动电源已达到产品化程度,中、大功率质子交换膜燃料电池发电系统的研究也取得了一定成果。由于质子交换膜燃料电池发电系统有望成为移动装备电源和重要建筑物备用电源的主要发展方向,因此有许多问题需要进行深入的研究。就备用氢能发电系统而言,除质子交换膜燃料电池单电池、电堆质量、效率和可靠性等基础研究外,其应用研究主要包括适应各种环境需要的发电机集成制造技术,质子交换膜燃料电池发电机电气输出补偿与电力变换技术,质子交换膜燃料电池发电机并联运行与控制技术,备用氢能发电站制氢与储氢技术,适应环境要求的空气(氧气)供应技术,氢气安全监控与排放技术,氢能发电站基础自动化设备与控制系统开发,建筑物采用质子交换膜燃料电池氢能发电电热联产联供系统,以及质子交换膜燃料电池氢能发电站建设技术等等。采用质子交换膜燃料电池氢能发电将大大提高重要装备及建筑电气系统的供电可靠性,使重要建筑物以市电和备用集中柴油电站供电的方式向市电与中、小型质子交换膜燃料电池发电装置、太阳能发电、风力发电等分散电源联网备用供电的灵活发供电系统转变,极大地提高建筑物的智能化程度、节能水平和环保效益。

    六、不同电解质类型产品特征对比

燃料电池主要类型:

资料来源:公开资料整理

    相关报告:智研咨询发布的《2017-2022年中国燃料电池市场运营态势及投资前景分析报告

本文采编:CY331
10000 12800
精品报告智研咨询 - 精品报告
2022-2028年中国燃料电池行业市场竞争态势及投资方向分析报告
2022-2028年中国燃料电池行业市场竞争态势及投资方向分析报告

《2022-2028年中国燃料电池行业市场竞争态势及投资方向分析报告》共八章,包含燃料电池产业市场分析,燃料电池国内重点生产厂家分析,2022-2028年燃料电池产业发展趋势及投资风险分析等内容。

如您有其他要求,请联系:

文章转载、引用说明:

智研咨询推崇信息资源共享,欢迎各大媒体和行研机构转载引用。但请遵守如下规则:

1.可全文转载,但不得恶意镜像。转载需注明来源(智研咨询)。

2.转载文章内容时不得进行删减或修改。图表和数据可以引用,但不能去除水印和数据来源。

如有违反以上规则,我们将保留追究法律责任的权力。

版权提示:

智研咨询倡导尊重与保护知识产权,对有明确来源的内容注明出处。如发现本站文章存在版权、稿酬或其它问题,烦请联系我们,我们将及时与您沟通处理。联系方式:gaojian@chyxx.com、010-60343812。

在线咨询
微信客服
微信扫码咨询客服
电话客服

咨询热线

400-700-9383
010-60343812
返回顶部
在线咨询
研究报告
商业计划书
项目可研
定制服务
返回顶部